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Figure 1: The first image (far left) illustrates an input control mesh; regular (gold) faces do not have an incident extraordinary vertex,
irregular quads (purple) have at least one extraordinary vertex, and triangular (green) faces are allowed. The second and third images show
the parametric patches we generate. The final image is of the same surface with a displacement map applied.

Abstract

We present a new method for approximating subdivision sur-
faces with hardware accelerated parametric patches. Our method
improves the memory bandwidth requirements for patch control
points, translating into superior performance compared to existing
methods. Our input is general, allowing for meshes that contain
both quadrilateral and triangular faces in the input control mesh, as
well as control meshes with boundary. We present two implementa-
tions of our scheme designed to run on Direct3D 11 class hardware
equipped with a tessellator unit.

1 Introduction

Catmull-Clark subdivision surfaces [Catmull and Clark 1978] have
become a standard for modeling free form shapes such as dynamic
characters in movies and computer games. By adding displacement
maps, we can create highly detailed shapes using a minimal amount
of storage [Lee et al. 2000]. Tools such as ZBrush combine these
two ideas to allow artists to edit models at multiple resolutions and
automatically create low resolution control meshes and displace-
ment maps.

Despite the prevalence of subdivision surfaces, realtime applica-
tions such as games predominately use polygon models to repre-
sent their geometry. The reason is understandable as GPU’s are
designed to accelerate polygon rendering and do so well. Yet, in
many cases, subdivision surfaces are already part of the content
creation pipeline for these applications. These surfaces are used in

non-realtime parts of production such as cut-scenes, but their real-
time counter parts are simplified polygon models of these high res-
olution characters. Ideally, we could use a high resolution polygon
model extracted at a high level of subdivision to better approximate
the character. However, this approach has a number of problems:

• Animation requires updating a large number of vertices each
frame using bone weights or morph targets, consuming com-
putational resources and harming performance.

• Faceting artifacts occur, due to the static nature of the polygon
mesh connectivity.

• Large polygon meshes consume significant disk, bus, and net-
work resources to store and transmit.

Given that these subdivision surfaces already exist, we could sim-
plify the content creation pipeline by skipping the precomputed,
fixed polygonalization step.

Figure 2: The Direct3D 11 graphics pipeline.

To address this issue, API designers and hardware vendors have
added a new tessellator unit to the graphics pipeline in Direct3D
11 [Drone et al. 2008]. This change adds new programmable stages,
the hull shader and the domain shader, to the graphics pipeline that



Figure 3: Example tessellations produced by the tessellator unit
for triangle and quad patches.

enable the GPU to tessellate arbitrary parametric surfaces (see Fig-
ure 2). The hull shader takes a user defined patch primitive as input.
Typically this input will consist of an irregular list of indices refer-
encing the control mesh points needed to construct a patch. The
job of the hull shader is to take this input, that may be irregular de-
pending on the valence of the vertices, perform whatever geometric
processing is required, and output a regular patch that is indepen-
dent of valence and efficient to evaluate.

The tessellator unit takes this regular patch as input, as well as
fractional tessellation factors along the edges of the patch, to au-
tomatically construct a triangulated sampling pattern for the patch.
The fractional tessellation factors specify the number of vertices
the tessellator should produce on each edge of the patch (fractional
tessellation factors morph between integer levels to avoid popping
artifacts when detail levels change). Figure 3 shows a set of exam-
ple tessellations using the same tessellation factor per edge. These
tessellation factors may be uniform, dependent on geometric com-
plexity or even distance to the viewer and are the mechanism by
which Direct3D 11 supports level of detail tessellations of these
surfaces.

To evaluate a patch, the tessellator unit calls the domain shader
with the patch data constructed in the hull shader along with the
barycentric coordinates of each vertex in the tessellation. The do-
main shader uses this information to emit a vertex for the patch.
The tessellator uses these vertices and the connectivity it generates
to construct the patch. Using this paradigm, Direct3D 11 can sup-
port hardware tessellation of nearly any parametric surface.

The advantage of the tessellator unit is that we need only store and
animate the control mesh of the subdivision surface, saving compu-
tational resources. Furthermore, only the small control mesh needs
to be sent to the GPU to generate polygons saving bandwidth to the
GPU. Moreover, we can tessellate these models dynamically on the
GPU to avoid faceting artifacts common with polygonal models.

However, directly tessellating subdivision surfaces can be
slow [Loop and Schaefer 2008] since patches with one or more
extraordinary vertex (valence not equal to 4) are composed of an
infinite set of polynomials. Therefore, we present a method that
approximates the subdivision surface by replacing these irregular
patches with a single rational patch that joins with G1 continuity to
the surrounding patches. In the regular case, our construction re-
produces the Catmull-Clark surface exactly and provides good ap-
proximations of the Catmull-Clark surface over patches containing
extraordinary vertices. In some cases, artists do not create surfaces

that are entirely quadrilateral and need to use a small number of tri-
angles on the surface. Our technique is also general enough to work
with mixed quad/triangle surfaces and surfaces with boundary. Fi-
nally, our method generates a very small number of control points
and reduces memory bandwidth bottlenecks on the GPU, resulting
in better performance than previous methods.

2 Previous Work

Because subdivision surfaces can be composed of an infinite set of
polynomials patches, they can be difficult to evaluate on the GPU.
Bolz and Schröder [2002] precompute samples of the subdivision
basis functions for various valences and topological configurations
to quickly evaluate these surfaces using a GPU. Shiue et al. [2005]
take a different approach and do not directly evaluate the subdivi-
sion surface but provide a method for performing subdivision di-
rectly on the GPU. However, both of these methods restrict the tes-
sellation patterns to binary subdivision, which is incompatible with
the fractional tessellation patterns and evaluation algorithms neces-
sary for GPU tessellation with Direct3D 11 [Drone et al. 2008].

Using the framework provided by Halstead et al. [1993],
Stam [1998] presented a method to exactly evaluate Catmull-Clark
surfaces at arbitrary parametric points. However, this method
only operates on quadrilateral patches with at most one extraor-
dinary vertex. To apply Stam’s method to surfaces with trian-
gles or patches with more than one extraordinary vertex, we must
subdivide the surface up to two times to provide sufficient sep-
aration of extraordinary vertices. In principle, these subdivision
steps could be carried out on the GPU using DirectX 11 Compute
Shaders [Boyd 2008]. Doing so will increase the size of the patch
queues fed to the hull shader by a factor of 4 or 16. If such refine-
ment is not performed everywhere but only locally when needed,
then ‘T’ junctions will be present that are incompatible with water-
tight tessellation. In addition to the overhead of performing the ex-
tra subdivisions and dealing with considerably larger patch queues,
Stam’s evaluation technique also requires an eigen space transform.
This transform amounts to a (2n + 8) × (2n + 8) matrix/control
point product in the hull shader where n is the number of quads
containing the extraordinary vertex. The domain shader must also
contain some logic to determine which of the three sets of eigen
basis functions are needed, requiring a total of 16(2n + 8) texture
reads to fetch. Each of these bicubic functions must be evaluated
and multiplied by a corresponding eigen value (raised to an appro-
priate power) and eigen space control point, then summed to gen-
erate the final surface value. While performing ‘exact’ subdivision
surface evaluation using Stam’s technique is feasible, the resource
requirements are considerable.

For these reasons, many researchers have investigated methods for
approximating Catmull-Clark surfaces with parametric patches that
are easier and faster to evaluate. To this end, Loop and Schae-
fer [2008] developed approximate Catmull-Clark (ACC) patches,
which were extended to creased subdivision surfaces by Kovacs et
al. [Kovacs et al. 2009]. These patches approximate the geometry
and normal field of the subdivision surface separately and require
25 control points to perform evaluation. Since the GPU will almost
always be bounded by memory bandwidth (fetch limited) for these
computations, reducing the number of control points necessary for
evaluation can lead to a significant performance improvement.

Myles et al. [2008b] also approximate Catmull-Clark surfaces such
that the ordinary patches are identical to the Catmull-Clark surface.
For patches containing one or more extraordinary vertices, the au-
thors create a bi-degree 5 patch encoded as a perturbation of a bi-
degree 3 patch. This patch creates a smooth join to neighboring
patches and can be represented using 32 control points. Later Ni et



al. [2008] created smooth surfaces by replacing patches containing
extraordinary vertices with multiple polynomial patches encoded
as a single patch for the purposes of GPU evaluation. This method
creates smooth surfaces and uses 24 control points per patch.

While most Catmull-Clark surfaces are composed mainly of quadri-
laterals, artists occasionally add triangles to the control mesh.
These triangles allow the artist to add/delete parameter lines on the
shape [Myles et al. 2008a] or provide a more natural parameteri-
zation of the surface [Stam and Loop 2003]. However, the tech-
niques mentioned previously [Loop and Schaefer 2008; Myles et al.
2008b; Ni et al. 2008] operate on surfaces containing only quads.
While we could perform one step of Catmull-Clark subdivision to
create a control mesh with only quadrilateral faces, we increase the
number of patches by a factor of 4 and reduce the parallel nature
of the computation on the GPU. Since the tessellator in Direct3D
11 supports both triangle and quad parameterizations, we desire a
method that can approximate Catmull-Clark surfaces composed of
both quads and triangles to avoid this extra splitting operation.

Vlachos et al. [2001] and Boubekuer and Alexa [2008] both pro-
vide methods for constructing the appearance of a smooth surface
from triangles. However, neither of these methods are specific to
Catmull-Clark surfaces and cannot reproduce the ordinary patches
of the Catmull-Clark surface. Myles et al. [2008a] extended the
work of Ni et al. [2008] to create Pm-patches and include sur-
faces with both triangle and pentagonal regions of the shape. Their
method requires 19 control points per triangle and 25 control points
per quad. In contrast, we use quadrilateral [Gregory 1974] and tri-
angular [Longhi 1987] Gregory patches to approximate the shape
of Catmull-Clark surfaces. Our technique requires at most 20 con-
trol points to perform evaluation (triangle patches require 15) and
we show that this technique leads to a significant improvement in
speed over previous work.

Peters [2000] also provided a method for “patching” a Catmull-
Clark surface using bicubic patches, which could be used to approx-
imate the Catmull-Clark surface. However, this technique required
large separation of extraordinary vertices, which necessitates a pre-
processing step of one or two levels of subdivision before applying
the algorithm. This preprocessing increases the number of patches
by up to a factor of 16 and suffers from many of the same problems
that exact evaluation using Stam’s algorithm does.

Chiyokura and Kimura [1983] also describe a method for build-
ing a smooth surface composed of quadrilateral patches using Gre-
gory patches from a network of curves that meet with tangent plane
continuity. However, their work considered a more general setting
than ours in that the tangents specified by the user could be arbi-
trary. This generality forced the authors to lower the degree of var-
ious cross-boundary derivatives in order to generate a G1 surface.
In contrast, our method is designed specifically for Catmull-Clark
subdivision surfaces. The tangent vectors are not arbitrary and the
surfaces we construct are more flexible.

3 Patch Construction

Over regular regions of the surface (quadrilateral patches with
no extraordinary vertices), Catmull-Clark subdivision surfaces are
equivalent to C2 tensor product bicubic B-splines. These regions
are easy to evaluate at any parameter value since the B-spline basis
functions are polynomials. However, subdivision surface patches
containing one or more extraordinary vertices or non-quadrilateral
patches are composed of an infinite set of polynomials. These re-
gions can be difficult and expensive to evaluate inside the domain
shader.

In our method, we keep the ordinary regions of the surface identical

to that of the Catmull-Clark surface. Over each irregular patch, we
replace each patch by a single quadrilateral or triangular Gregory
patch. We place no restriction on the number of extraordinary ver-
tices per patch, hence our method generates only one patch per face
in the control mesh of the subdivision surface.

3.1 Gregory Patches

Gregory patches are a modified form of traditional tensor product
and triangular polynomial patches. This modification was intro-
duced by Gregory [1974] to overcome the difficult problem of en-
suring that a collection of patches, sharing a vertex and pairwise
sharing edges, meet with tangent plane continuity. Unlike polyno-
mial patches, Gregory patches have the property that mixed partial

derivatives need not match; that is, ∂2

∂u∂v
6= ∂2

∂v∂u
at patch cor-

ners. This property manifests itself in Bézier form as special con-
trol points that are functions of the bivariate parameter, taking on
a (possibly) different position for every domain point; in particular
along different patch boundaries. This makes the construction of
piecewise tangent plane smooth surfaces over arbitrary 2-manifold
tessellations possible with (effectively) lower order patches than
can be achieved with polynomials. There are caveats of course;
Gregory patches possess singularities (zero denominator) at patch
corners, and the surface itself is rational with complicated tangent
functions. From a practical standpoint however, these difficulties
are not limitations and Gregory patches are well suited to solve the
problem at hand.
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Figure 4: The control point label scheme for a) a tensor product,
and b) a triangular Gregory patch.

The bicubic Bézier form of a quadrilateral Gregory patch has 20
control points labeled according to Figure 4a. We write the patch

Q(u, v) = B
3(u) · G · B

3(v),

where Bd(·) are degree d Bézier basis functions and

G =









p0 e
−

0
e
+

3
p3

e
+

0
F0 F3 e

−

3

e
−

1
F1 F2 e

+

2

p1 e
+

1
e
−

2
p2









,

where

F0 =
uf

+
0

+vf−
0

u+v
, F1 =

(1−u)f−
1

+vf+
1

1−u+v
,

F2 =
(1−u)f+

2
+(1−v)f−

2

2−u−v
, F3 =

uf
−

3
+(1−v)f+

3
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are the special control points whose values vary with u and v.

The triangular Gregory patch we use is a cubic-quartic hybrid; it is a
quartic Gregory triangle with cubic boundary curves. The labeling



of our triangular patch control points is shown in Figure 4b. We
write this triangular Gregory patch as

T (u, v, w) = u
3
p0 + v

3
p1 + w

3
p2

+ 3uv(u + v)
(

u e
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1
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0
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w+u
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2
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are the varying control points. Note that for triangles, we use a
barycentric parameterization where u + v + w = 1, so that the
formulation is symmetric with respect to each edge.

To build the control points for our Gregory patches, we identify
three distinct control point types corresponding to corners (e.g. p0),
edges (e.g. e+

0 ), and faces (e.g. f+
0 ). All of the patch control points

can be constructed from these cases.

3.2 Corner Points

Since Gregory patches are a simple, rational extension of Bézier
patches, they share many of the same properties. In particular, the
boundaries of the Gregory patches are cubic Bézier curves. Bézier
curves interpolate their end-points so we place these control points
(corresponding to the corner case p0) directly on the Catmull-Clark
limit surface.

Figure 5: The one-ring neighborhood of vertex v, together with its
split one-ring neighborhood. The points mi are edge midpoints,
and ci are the average of the vertices of the ith face.

The limit stencil for a subdivision surface corresponds to the domi-
nant left eigenvector of its subdivision matrix [Halstead et al. 1993].
However, this stencil is only valid if the Catmull-Clark surface is
composed solely of quads. We can generalize this stencil easily
though. Let mi be the midpoint of the ith edge surrounding the
vertex v on the control mesh and ci be the average of the vertices
of the ith face according to Figure 5. The limit position is then

p0 =
n − 3

n + 5
v +

4

n(n + 5)

n−1
∑

i=0

(mi + ci) .

3.3 Edge Points

Not only do we place the corner points of the Gregory patch p0

on the limit surface, but we also interpolate the tangent plane of

the limit surface at that point. Similar to limit positions, the limit
tangent stencil for a subdivision surface is given by the subdominant
left eigenvector of the subdivision matrix. Again, we generalize this
stencil for the limit tangent q to Catmull-Clark surfaces composed
of both quads and triangles as

q =
2

n

n−1
∑

i=0

((

1 − σ cos
(

π
n

))

cos
(

2πi
n

)

mi + 2σ cos
(

2πi+π
n

)

ci

)

,

where σ = (4+cos2
(

π
n

)

)−1/2. Since the derivative of the Gregory

patch at its end-point is 3(e+
0 − p0), we can solve for e+

0

e
+
0 = p0 + 2

3
λq.

The value for the scale factor λ is free in our construction, but set-
ting λ to the subdominant eigenvalue of the Catmull-Clark surface
gives good results and has the well known form

λ =
1

16

(

5 + cos

(

2π

n

)

+ cos

(

π

n

)

√

18 + 2 cos

(

2π

n

)

)

.

3.4 Face Points

Our choice of p0 and e+
0 yields a surface that has a common tan-

gent plane at each of the patch corners p0. To make the surface
smooth everywhere, we must choose the face points f+

0 carefully.
Our construction generalizes the tangent patch conditions described
by Loop and Schaefer [2008]. For tangent plane continuity, we
need that the versal (along the edge) and two transversal (pointing
toward the patch interiors) derivatives are linearly dependent along
the shared edge. We equate these derivatives to the vector fields

u(t) = B
2(t) · [u0,u1,u2],

v(t) = B
3(t) · [v0,v1,v2,v3],

v̂(t) = B
3(t) · [v̂0, v̂1, v̂2, v̂3],

and require they be linearly dependent for t ∈ [0, 1], see Figure 6.

u1 u2
u0

v0 v1 v2 v3

v0̂
v1̂ v2̂

v3̂

Figure 6: Control vector label for the three tangent fields used in
our tangent plane smoothness constraints .

In our notation, u(t) is identical for both quad and triangle patches.

u0 = 3(e+
0 − p0),

u1 = 3(e−

1 − e
+
0 ),

u2 = 3(p1 − e
−

1 ).

However, the definition of v(t) and v̂(t)’s control vectors vary de-
pending on whether the Gregory patch is a quad or a triangle patch.
In the following, setting d = 4 for triangles and d = 3 for quads,



we have

v0 = 3(e−

0 − p0),

v1 = d(f+
0 − e

+
0 ),

v2 = d(f−1 − e
−

1 ),

v3 = 3(e+
1 − p1).

The control vectors of v̂(t) are defined similarly to v(t).

The condition we satisfy for tangent plane continuity is

((1 − t)c0 − tc1)u(t) = 1
2

(v(t) + v̂(t)) , (1)

where ci = cos
(

2π
ni

)

, i = 0, 1; n0 and n1 are the number of

patches shared at the corners corresponding to t = 0 and t = 1.
Note that condition (1) is specialized to the case where the tangent
vectors surrounding a vertex form an affine n-gon; we inherit this
property by interpolating Catmull-Clark subdivision surface struc-
ture at patch corners.

Both sides of condition (1) are cubic polynomials; so this polyno-
mial condition is equivalent to 4 scalar conditions found by equat-
ing the Bézier coefficients of each side, resulting in

c0u0 = 1
2

(v0 + v̂0) (2)

2
3
c0u1 −

1
3
c1u0 = 1

2
(v1 + v̂1) (3)

1
3
c0u2 −

2
3
c1u1 = 1

2
(v2 + v̂2) (4)

−c1u2 = 1
2

(v3 + v̂3) (5)

Conditions (2) and (5) will be satisfied by interpolating the Catmull-
Clark limit tangents at endpoints. Condition (3) (and similarly (4))
will be satisfied by constructing a transversal vector r such that

v1 = 2
3
c0u1 −

1
3
c1u0 + r

v̂1 = 2
3
c0u1 −

1
3
c1u0 − r

While r is arbitrary, we choose this vector to reproduce the ordinary
case when n = 4. The vector r will be different for each face point
and the corresponding vector for f+

0 is given by

r
+
0 =

1

3
(mi+1 − mi−1) +

2

3
(ci − ci−1) .

If we now solve for the face point f+
0 , we obtain

f
+
0 =

1

d

(

c1 p0 + (d − 2c0 − c1) e
+
0 + 2c0e

−

1 + r
+
0

)

. (6)

For irregular regions of the surface, this construction leads to tan-
gent smooth surfaces. Over regular regions, we reproduce bicubic
b-splines and the surface is C2.

4 Implementation

We explored various implementation approaches for the best fit to
the Direct3D 11 pipeline and present two methods that perform
well. The choice of which method to use will be application and
hardware vendor specific, as each has its own strengths and weak-
nesses. One of our implementations maps the patch construction to
the vertex and hull shaders, while the other performs all computa-
tions in the hull shader freeing the vertex shader for other purposes,
such as animation and deformations of the input mesh.

Figure 7: The left texture contains the connectivity, where Pi,j (or

Qi,j) is the vertex id of jth direct (or diagonal) neighbor for ith

vertex. If the adjacent face is a triangle, no diagonal neighbor exists
and we store the id: −1. The right texture stores the actual vertex
positions, which will be dynamically updated during animation.

4.1 Vertex Shader

Section 3 describes how we compute the control points of the Gre-
gory patch using the one-ring of the face corresponding to the patch
(the set of vertices from faces adjacent to the current face). Among
the three control point types, most control points are exclusively
influenced by a small subset of these vertices. Specifically, p, e+

i ,

and e−

i are only influenced by the vertex v and its one-ring neigh-
borhood (the set of vertices whose faces contain v). These vertex-
based computations map well to the vertex shader. We pass the
vertex position v to the vertex shader and fetch its one-ring from
two textures (see Figure 7). The first texture contains the one-ring
indices for each control mesh vertex; this texture is invariant under
animation. The second texture stores the dynamic vertex positions.
If the vertex has n adjacent faces, we compute n edge midpoints
mi and n face centroids ci where i = 0 . . . n − 1 and indexes the
faces around the vertex. Each p, e+

i , e−

i , r+
i , r−i is a function of

v,mi, ci. These control points (along with r+
i , r−i ) form the out-

put from the vertex shader. The corner points and edge points are
only computed once if the vertex post transform cache is unlim-
ited. In practice, these points will be re-computed on a vertex cache
miss. By carefully arranging vertices in the cache, we can reduce
these redundant computations. Many optimizations, such as [Lin
and Yu 2006; Forsyth 2006; Sander et al. 2007], exist for mini-
mizing vertex cache misses. One simple solution is to use separate
index buffers for regular and Gregory patches. In this way, the ver-
tices processing the same shader are grouped more tightly.

4.2 Hull Shader

The input to the hull shader is a patch primitive that consists of 3
and 4 points for the triangle and tensor product cases respectively.
Three/four threads are invoked to compute one Gregory patch sec-
tor that includes one corner point, two edge points and two face
points. For each vertex of the patch, we find the index of the edge
j from the texture shown in Figure 8, which provides an offset into
the vertex data to find the control points e+

0 , and e−

0 as well as the

vectors r+
0 and r−0 . Using the edge-points from adjacent vertices

as well as the vectors r+
0 and r−0 , we also construct the face points

by evaluating Equation 6. Because the patch primitive contains at
most 4 vertices, each vertex in the primitive is transferred much
less frequently compared to the patch primitive that consists of 32
points.

4.3 Alternative Hull Shader Stencil Approach

While the patch construction maps naturally to the vertex and hull
shaders, it is also possible to perform all the computations in the
hull shader so that the vertex shader can be freed for other purposes.
The key observations for this approach are



Figure 8: 2D texture that stores the offsets of the current edge point
for each vertex in the patch primitive. v0,v1, v2,v3 are the ver-
tices of a quad patch primitive (only three vertices for a triangle).
Oi,j has the rotation offset of ith patch from the jth vertex.

• each control point is a linear combination of the vertices in
the one-ring of the face.

• for all the patches sharing the same connectivity in their one-
ring, the weights contributed from the vertices have a unique
set of values (or stencil).

We first preprocess the input meshes to sort all patches based on
their connectivity type (i.e. valence of each of the 3 (triangles) or
4 (quads) vertices of the patch). Given a connectivity type, we pre-
compute the weight of each vertex that contributes to a Gregory
control point using the formulas for p, e, or f . The results are stored
in an array where each element associates with a vertex-weight pair.
If there are m connectivity types, k control points per patch, and ℓ
vertices in the one-ring of the patch, the total number of weights
computed would be mkℓ. We pack this data into a stencil texture.

Given a list of the ℓ vertices in the one-ring of the patch (the hull
shader limits this number to 32), we fetch the necessary set of
weights from the stencil texture using the connectivity id and con-
trol point id. Using these weights, we compute the 20 (or 15 for
triangle patches) control points for the Gregory patch as a weighted
sum of all the vertices in the input patch primitive. Although this
procedure maps very well to the SIMD nature of the hardware, it
has the following inefficiencies that our first method avoids.

• Since each control point is only influenced by a subset of the
vertices of the input patch, many of the weights in the stencil
will be zero. The weighted sum we compute includes all input
vertices, resulting in many unnecessary products and texture
samples. This issue can be diminished by precomputing a
boolean mask that indicates what products can be skipped and
avoid the corresponding texture samples.

• Corner and edge control points shared by adjacent patches are
evaluated independently. Unlike in Section 4.1, there are no
opportunities for sharing intermediate results.

• Finally, in order to guarantee consistent evaluation, a global
ordering of the vertices is required and an additional offset
needs to be sampled in order to compute the sum in an order
that is consistent for all patches.

On the other hand, the first method requires the vertex shader for
patch construction and we must add an additional rendering pass
for animation/deformation. Since each method has its own advan-
tages/disadvantages, we present both approaches for completeness.

4.4 Domain Shader

Once the hull shader generates the control points, the tessellator
calls the domain shader to evaluate the patch at various parametric
coordinates. We customize two domain shaders for evaluating the
irregular tensor product patches and triangular patches. However,
directly evaluating these patches in their Gregory form could be ex-
pensive due to the rational nature of these patches. Therefore, we
transform the patch into its polynomial Bézier form by evaluating
the formula for the Fi (see Section 3.1). The caveat that this eval-
uation results in a divide by zero at patch corners is easily handled
using a conditional assignment; the SIMD branch divergence this
creates is negligible.

The transformation to polynomial form allows us to treat the Gre-
gory patch as a standard Bézier patch to evaluate the position and
normal of the surface simultaneously using the DeCasteljau algo-
rithm. Notice that while the position is correct when evaluated in
this fashion, the tangent vectors, and hence the normal, are not. The
reason is that Gregory patches are rational functions with compli-
cated derivatives. However, our approximate normals will be exact
along the boundaries of the patch and continuous over the interior.
In general these normals are much faster to compute than the true
rational derivatives and we have not observed any artifacts from
this approximation. From this surface, we can also create highly-
detailed models by offsetting these vertices using a displacement
map.

4.5 Water-tight Evaluation

Water-tight evaluation of the surface is important both for the po-
sition (to avoid pixel dropouts in the surface) and for the normal
when using displacement mapping (to avoid cracks/holes). Unfor-
tunately, due to the nature of floating point computations, addition
and multiplication are not associative or distributive. Furthermore,
additions and products are usually performed using multiply-adds,
which increase the accuracy of the result but make the resulting ex-
pression non-commutative. Therefore, we must take great care in
order to guarantee that operations are performed in an order that
produces a consistent result. Such consistency arises in

• control point evaluation. We derive the shared control as the
weighted sum of a patch’s one-ring in a predefined order. As
long as the labeling/ordering of one-ring neighborhood is al-
ways consistent, the computations of the same control point
leads to a single value.

• patch evaluation. We perform patch evaluation consistently
by either consistent parametric orientation or symmetric eval-
uation along the shared edge.

Water-tight evaluation of the normals is more complex as we com-
pute the normal by taking the cross product of a pair of tangent
vectors. If the normal at a point shared by multiple patches is not
the same, we might see holes with displacement mapping. How-
ever, we can easily achieve water-tight normals using edge/corner
ownership to ensure there is only one normal at the shared point.

4.6 Boundary Cases

We can also modify our construction to handle meshes with bound-
aries as well. For corner points p contained by more than one patch,
we place p using the limit stencil for cubic B-spline curves at a ra-
tio of 1 : 4 : 1 of the adjacent boundary vertices. If p is contained
by exactly one patch, we interpolate the vertex of the control mesh
and set p = v. Edge points e+

0 , e−

k−1 (where k is the number of
edges adjacent to v) along the boundary are likewise modified to
use a ratio of 2 : 1 of the control mesh vertices at the end-points of



Figure 9: From the left: the control mesh, the patch structure, the surface produced by our method, and the surface with a displacement map.

the edge. We create interior edge points using the tangent stencils
for Catmull-Clark surfaces with boundaries described by Biermann
et al. [2000]. For face points f+

0 and f−k−1 we reflect interior control

points across the boundary to create r+
0 and r−k−1.

5 Results

Since at the time of this writing Direct3D 11 class hardware is
still under development, we implemented the three most compet-
itive schemes on a hardware emulator that supports all Direct3D 11
functionality. Our preliminary results indicate that Gregory patch
evaluation is up to 20% faster than other methods including [Loop
and Schaefer 2008], [Ni et al. 2008] and [Myles et al. 2008a]. This
difference is mainly due to the fact that our method requires the do-
main shader to fetch fewer control points. We require only 20 con-
trol points for evaluation while both Pm-patches and ACC patches
require 25 control points. Table 1 shows timing data for our DX11
implementation on Figure 1, which has 508 irregular patches. This
performance data does not include CPU overhad (specifically PC
memory and CPU PCI express overhead) or driver-side overhead.
We made two observations from the results of the hardware emula-
tor. First, our scheme outperforms ACC and Pm-patch in all cases.
Second, the two-stage approach (described in Section 4.1 + 4.2)
works well when the tessellation level is low while the stencil ap-
proach (described in Section 4.3) is well suited to higher tessellation
levels. Due to lack of cache optimizations in our current two-stage
approach, we expect better performance after optimizations.

Figure 10: A close-up of a portion of the model from Figure 1
showing a tri/quad region and our surface on the right.

We also show several examples of our surfaces in Figures 1, 9,
and 12. Our construction can handle surfaces composed entirely of
quads like the examples in Figure 9 and the first 4 columns of Fig-
ure 12. Figure 1 and columns 5 − 7 of Figure 12 also demonstrate
surfaces composed of both quads and triangles. Figure 10 shows
a zoomed in portion of Figure 1 containing a triangle/quad region
of the surface and the smooth transition produced by our method.

Furthermore, our surfaces may also contain boundaries as demon-
strated in column 4 of Figure 12. Finally, since our evaluation is
water-tight, both in position and normal, these surfaces are suitable
for displacement mapping as shown in Figures 1 and 9.

Stencil Two-stage

ACC Our Scheme Pm-patch Our Scheme

N=10 0.104 0.0913 0.1327 0.1047

N=6 0.053 0.0485

Table 1: Using the shape from Figure 1, we construct each irreg-
ular quad on the emulator and then evaluate on a grid of size N
× N. Performance measured in ms. Refer to stencil and two-stage
approaches in section 4.3, and 4.1 + 4.2 respectively.

In addition, we developed our shader code to run on Direct3D 10
hardware by substituting the hull shader with the geometry shader.
We emulate the tessellator unit using a generic GPU refinement
kernel [Boubekeur and Schlick 2007] and perform Instanced Tes-
sellation using one extra rendering pass. In the first pass, the ge-
ometry shader streams out the control points for the patches. In
the following pass, we instance the parametric domains and send
each barycentric coordinate to the vertex shader as an input vertex.
The vertex shader then performs the job of the domain shader in
Direct3D 11 and evaluates the tessellated patch. Instancing is the
most efficient method for tessellation on current hardware and re-
duces CPU overhead in terms of the number of draw calls, state
changes, and buffer updates. Table 2 shows the performance of our
Direct3D 10 implementation in terms of frames per second.

ACC Pm-patch Our Scheme

N = 17 25 17 25 17 25

monster frog 365 186 377 208 398 213
bigguy 348 176 359 186 370 194

Table 2: Performance comparison. Instanced Tessellation with
GPU patch construction measured in frames per second on NVIDIA
GTX260, and Intel Core 2 Duo CPU, 3GHz. Monster frog contains
1292 patches and bigguy 1754 patches. We construct each patch
on the GPU every frame and then evaluate on a grid of size N × N.

In our Direct3D 10 implementation, the domain sample points are
known a priori, so our performance advantage over Pm-patches is
not as pronounced as in Direct3D 11. With a tessellator unit in Di-
rect3D 11, these sample points are not known ahead of time and will



ACC Pm-patch Our Scheme

monster frog .146/.0148 .079/.0111 .090/.0108

big guy .096/.0109 .072/.00783 .082/.00710

Table 3: Error as measured by Metro between different approxima-

tions and the Catmull-Clark surface. Error reported is RMS and of
the form position error as a percentage of the bounding box diago-
nal of the model * 10−3 / error in radians of normal.

be generated by the tessellator at runtime. Gregory patches fit better
than Pm-patches in Direct3D 11 because Gregory patches do not
require the domain transformations that Pm-patches do. Further-
more, our tests in Direct3D 11 indicate that the methods are bound
by fetching control points and that fewer control points translates
into larger gains on Direct3D 11 hardware.

Figure 11 compares the smooth quad mesh surfaces generated by
various schemes with the Catmull-Clark limit surface using para-
metric correspondence between the surfaces. The triangle areas
are not rendered since [Loop and Schaefer 2008] only works for
quadrilateral meshes. At each parametric domain, we measure both
the geometric distance and normal angle difference between the two
surfaces. While parametric correspondence is important for textur-
ing and especially for displacement mapping, we also measured the
error between the surfaces using Metro [Cignoni et al. 1998], which
approximates the Hausdorff distance between the surfaces. This
distance is closer to perceptual distance between the surfaces and
we measure the RMS error reported by Metro for both the position
and normals (using the parameterization provided by the distance
calculation) of the shapes, which is summarized in Table 3.

Since Pm-patches only interpolate the Catmull-Clark limit posi-
tions at the vertices of the control mesh, the normals vary more
from the Catmull-Clark surface, which can be seen in Table 3. ACC
patches use geometry patches to encode the location of the vertices
and tangent patches to create a continuous normal field. At the ver-
tices of the control mesh, ACC patches interpolate both the limit
position and normals of the Catmull-Clark surface. However, this
construction does not extend to triangle patches. In contrast Gre-
gory patches handle both triangle and quad surfaces and interpolate
both the limit positions and normals of the Catmull-Clark surface
at the control vertices. In general, the approximation quality of our
method exceeds ACC patches and is similar quality to that of Pm-
patches but faster to evaluate.

6 Conclusions

We have presented a new method for approximating Catmull-Clark
subdivision surfaces with Gregory patches that is suitable for pro-
grammable hardware implementation supporting automatic surface
tessellation. As memory access is the bottleneck in dynamic patch-
ing schemes such as ours, we optimize the critical memory fetch
requirements compared to previous work. Our experiments demon-
strate comparable visual fidelity, and superior performance on both
available hardware and a Direct3D 11 class hardware emulator.

The surfaces we generate show very little difference to their
Catmull-Clark subdivision surface counterparts. With additional ef-
fort, we could improve this error. The degrees of freedom available
in our construction, the scale factor λ and transversal vector r could
be optimized to minimize (some meaningful measure of) the differ-
ence with the Catmull-Clark surface. Our choices were made to
keep the construction simple, while producing reasonable results.

One drawback that we can foresee for any approximate subdivision
surface is the slight disparity artists may encounter between the sur-

Figure 11: From top to bottom, parametric error of ACC, Pm-
patches and our method with respect to the Catmull-Clark limit sur-
face. The position (column 1) and normal angle difference (column
2) to the limit surface of Catmull-Clark subdivision are shown with
blue representing no error and red representing high error.

face displayed by their content creation tools and the one that is ren-
dered in realtime. The solution is to use the approximate surfaces
as part of content creation and we intend to make our source code
public to make such a transition easier for tool vendors.
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